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EXPERIMENTAL TESTING OF UNSTEADY THREE-DIMENSIONAL LIFTING
SURFACE THEQRIES FOR INCOMPRESSIBLE FLOW*

Horgt Hertrich

1. Introduction

Over the last few years, the treatment of the unsteady /7
1ifﬁ1ng surface thecory has made significant advances. In '
particular, the calculation of the aerodynamic forces over
rigid oscillating lifting surfaces of finite span has been
significantly -improved. The preliminary work for this was
already done 1n 1940 with the basic paper of H. G. Kuessner [9]

- on the integral equation of the harmonically oscillating lifting
surface for compressible subsonic flow. Later on, C. E. Watkins,
H. L. Runyan, and D. S. Woolston [1] numerically solved the
kernel function of this integral equation. Based on this, a
number of colocation methods were developed for calculating the
unsteady aerodynamic forces [2, 3, 43, ete. Other lifting
surface methods use a small box method, in which the lifting
surface is covered with a network of small boxes [5, 6].

In the older 1lifting line methods, the vortices are /8
concentrated along a line. The 1lifting line method is limited
to aspect ratios A > 3. Lifting surface methods, on the other
hand, can also be used for lifting surfaces with small aspect

*Communications from the Max Planck Institute for Fluid "
Dynamics and the Aerodynamie Test Facility. W. Tollmein and
H. Sc¢hlichting, editors. ST



' ratios because of their vortex distribution over the area,. Up

to the present time, it has not been possible to establish
lifting surface methods for the subsonic range which would lead
to satisfactory results for wings in combination with rudders.
Here one must resort to 1lifting line methods of the strip theory,-
which 1s essentially two-dimensional.

The experimental development has not stayed abreast of the
development in the theoretical area. Numerous investigations of
unsteady aerodynamic forces under plane and three—-dimensional
flow conditions have been carried out, both for lncompressible
as well as for compressible conditions. However, with only a
few exceptions, these are global measurements.whiéh'do not give
any information about the distribution of the forceces. The experi-
mental verification of unsteady aercdynamiecforceisthedries.
using enly global measurements is unsatisfactory. 'Only an inves-
tigation of the unsteady pressure distribution will provide
enough information to determine whether a theory can be used.

Pressure distribution measurements were carried out only
rarely becaﬁse even the measurement ‘of global unsteady aero-
dynamic forces was connected with considerable difficulties,
both for planning the experiment and for making measurements.
This is especially true for wind tunnel measurements with wings
with oscillating rudders, which up to the present time have only
been carried out at the’NLR* in Amsterdam. Critical comparisons
of various aerodynamic¢ force theories using measured thréeu
dimensional pressure distributicns have been published to only
a very limited extent.

¥NLR = Nationaal Lucht- en Rulmtevaartlaboratorium,
Amsterdam (National Aerodynamics and Space Laboratory).



2. Experiﬁeﬁt Principle

The first measurements of unsteady pressures ovef a wing
with an oscillating rudder were carried out by H. Drescher [16]
in 1937 using a small water tunnel of the AVA. The results of
the investigations, which were carried out over several years,
were later on partially published in the form of a dissertation
[17]. In the middle of the Fifties, such measurements were
again resumed élmost at the same time in Englahd and the USA
£18, 19]. After this, this was also again resumed at the NLR
in Amsterdam [20] and at the ONERA¥ in France [21].

The measurements performed up toe the present can be divided
into two groups, depending on the measurement methods used. The
first measurement method consists of assligning a pressure trans-
ducer installed in the model with each measurement point. The
presaure transducer is placed as close as possible to the pres-
sure tap [18, 19, 22]. 1In the second measurement method, the
pressure taps are connected through lines to a central measure-
ment unit outside of the model (16, 23, 24].

The first method was especially appropriate for investiga-
tions with two-dimensional flow, because then only one wing
section 1s measured and, therefore, 10 to 12 pressure difference
transducers are sufficient to obtaln the distribution of the
pressure difference between the top.:dide and the bottom side.

It is assumed that the meodels are so thin that only short con-=
nectlion 1lines between the pressure transducers and the pressure
taps are required. This assumption no longer holds for large
models, so that it is necessary to use absolute pressure
transducers, which at the same time doubles the number of

¥ONERA = Office National de'ftudes et de Recherches
Aérospatiales, Paris (National Aercspace Study and Research
Off;ce).
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preégure tranéducers [20]. One disadvantage of'thiﬁwﬁddels is
the fact that no measurement values are obtained from the imme-
diate vicinity of the model edges because of the considerable
thickness of the pressure transducers. Especially in compress=
slble flow, it is only possible to investigate. very small models,
so that the very small pressure transducers must be used. For
this reéson, pressure transducers are used at the ONERA which
were developed from medical pressure probes for measuring the
blood pressure in the heart chamber [25], -

In the case of measurements of wings of finite span, usually
one was restricted Lo a few wing sectionsﬂ for example, in [18],
measurements were made in three steps at—ﬁo, 86, and 96% of wing /10
span, where there were nine measurement polnts each. Pressure
transducers are expensive and their calibration complicates the

experiment. -~ = -~ o o ot et e S

S
Using the second measurement method, it is possible to
interrogate almost an unlimited number of measurement stations
using one préssure measurement capsule, assuming that a suitable
switching unit is available which connects the'tube line coming
from each measurement point to the measurement capsule. Pléstic
hoses or metal tubes can be used as pressure lines. If the
inner diameters are between 1 and 1.5 mm, the external diameter
of the small metal tubes does not have to be greater than 2 mm.
These small dimenslons make it possible to carry out measurements
with very small wing parts, for example, in the vicinity of a
sharp traliling edge. However, a centrally located pressure
measurement -capsule does not display the oscillating pressure
which occurs on the model, but instead a pressure which is
changed in ampliitude éand phase because of the conduction
resistance. This means that the dynamic behavior of the lines



must be known in order to be able to determine the pressures
which actually occurred on the model. In other words, the lines
must be calibrated. This can be done by pressing a pressure
connection equipped with a second pressure measurement capsule
onto the pressure measurement tap. Then the pressures of the
desired frequency are transmitted to the individual lines of the
model [247. By comparing the values measured by the two pressure
' measurement capsules, it is then possible to determine the
behavior of the line for various frequencies and pressure condi-
tions. It has been found that the calibration factér of the
line depends to a lesser extent on the pressure amplitudes than
on the frequencies.and on the statiec pressure in the line. The
resistance increases for decreasing static pressure. In addition,
each line system has an upper limiting frequency beyond which
signél transmission can no-iohger occur. Therefore, in the case
of measurements under compressible flow conditions, 1t is
‘necessary to select l1lines with espeecially favorable resiszstance
characteristics. "High oscillation frequencies are also required
in this velocity range in order to achieve high reduced frequen-
cles. Therefore, it 1s necessary to carry out preliminary .
experiments using speelal calibration devices, or fto determine
the dynamic behavior of the planned line systems by calculations
[26, 27].

.
=
=

In the case of measurements in incompressible flow, the

|

calibration procedure for the pressure lines can be considerably
simpliified. One can use the fact that the differences in static
pressures in the various lines are ftoo small to influence the
dynamic behavior. This means that only one 1ine has to be cal-
ibrated if it can be assumed that the dynamic behavior of all
of the lines is identical. In order to bring this about, all
tube lihes are manufactured of the same components with the same

length and dimensions, If one wishes to have a second measurement’



‘tépwimmediately adjacent to a certain measurement point and if
it is desired. to connect the pressure measurement capsule
installed in the model to it, 1t is possible to measure the
resistance of this (reference) line by carrying out a comparison
measurement wlth the central-meagurement capsule, We can then
arrive at a conelusion for-all of the other lines. This
principle was first applied by H. Bergh [23] and has the advan-
tage that the calibration takes only a few seconds and no
complicated devices are necesséry. ‘This wvery éimple procedure
can only be used in the low subsonic range, because the condition
of small static pressure differences in the lines will only be
satisfled under this condition. -At higher velocities, it is
necesgsary to investigate the steady- pressure distribution over

The model and to introduce it as an additlonal correction factor.

In the case of measurements in incompressible flow, the

" procedure described has the advantage of a relatively simple’
experiment, as well as the advantage'that the evaluation of the
experiment is greatly simplified. This is because only a silngle
complex correction factor must be considered.. Therefore, we
selected this principle for the esxtensive experimental program
carried out at the AVA [28].

3. Test Stand

During the development of the test stand, we consider the
Tfact that we wished to carry out not only wind tunnel measure-—
ments, but also measurements in the laboratory outside of the
wind tunnel. The laboratory measurements were required for /12
testing the complicated measurement technology and for deter- - o
mining the pressure distributions in'the case of oscillations
in gquiet air. The test stand, therefore, had to be easily -
transportable. :



" " One important aspect for the ‘wind tunnel measurements was
the investigation of the influence of the wing aspect matio on
the unsteady aerodynamie forces. Since the manufacturing of
several'models'withvvarious aspect ratios would Have been too
time consuming and costly, it was natural to use the half-model
technology customarily used in aerodynamics. In this method, the
model 1is clamped at the channel wall on one side. In addition,
we were able to change the penetration of the model into the

wind stream.

In order to be able to clamp the model on one side in the
free test section of the 3 m wind tunnel, we built a very heavy
wooden frame with an installed clamping device with a torsion
spring. The torsion gpring consists of eight parallel spring
rods arranged in a regular octagon. The clamping length could
be adjusted continuously [28]. | |

The test stand has wheels and its height can be adjusted
with four spindles. . During the wind tunnel experiﬁents, it was
supported on an elevating platform and was shielded against the
wind current by means of a plate.which extended from the lower
edge of the exit nozzle up to the lower edge of fhe capture
funnel, (Figures 1 and 2). The plate is used as a plane of
symmetry, and one should Ilmagine the model to undergo reflection
by this plane. .

An electrodynamic exciter was located on this wooden frame
which was connected to the model {rack or at the rudder through

a rod, which made the model perform rotationall/oscillabions.|: '
In the case of rudder rotational oscillations, én“éif—fiiléd
rubber hose served as a restoring spring. The hose was located
on the top side of the plate in a cavity of the fuselage~like
body, and at the same time, served as a hermetic seal between
the model and the plate,
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"The thin profile rods were attached to two wooden blocks
outside of the wind flow CFigure 1). The profile rods were used
to support the model along the axls of rotation.

Iy, Models

A rectangular wing and:a sweptbaék wing with a sweepback of
25° was investigated as shown in Pigures 3 and 4. Except for the
sweepback, these models have the same dimensions as shown 1In
Figures 5 and 6. Both have the NACA 0012 profile. Later on,
they were fitted with a full-length rudder amounting to 30% of
the wing chord 7 = 0.6 m. The elevation adjustment of the test
stand was selected for both models so that aspect ratios of A =
3.1 and 2.5 resulted for the half-spans s = 0.94 and 0.74 m and
for semiwing areas of F/2 = 0.564 and 0.444 m®.

The models each consist of two halves and were manufactured
from glass fiber reinforced polyester resin. A negative mold
was made of plaster in which the external skin resin was cast
while iﬁserting‘glass fiber mats. After the outer skin had
become rigid, the longitudinal and transverse ribs were glued
in, as shown 1n Figure 7. There are 140 pressure taps in the
same configuration in both halves. A 40 mm long brass tube with
an internal dilameter of 1.6 mm was glued into the holes, which
wag connected to a 2 m long PVC hose. All of the lines had to
be made of similar materials in order to achieve identical
dynamic resistance behavior. The hoses were led out along the

lower side of the models and connected to s8ix switching devices

(§canivalves), Figure 8. The external pressure measurement

capgule 12 switched behind the scanivalwves. -
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Figure 5. Rectangular wing and
rudder in test section.

Figure 6. Sweptback wing in
test section.



Sk

Figure 7. One-half of rectangular
wing with installed pressure
measurement capsule.

Figure 8. Stepping switch with hose
connections, external pressure
measurement capsule, and cathode
followers.



" The internal pressure measurement capsule is located

inside the model which is used for callbrating the reference
line (Figure 7). In addition, there are six acceleration
transducers 1In the model with which 1t is possible to check the
oscillation shape. Figure 8 shows the cathode follower switched

behind the acceleration transducers.

Both model halves are connected in many places by numerous
pass pins and screws and are attached along the lower side to
a metal track. The torsion spring is clamped to this track.

We measured rotational oscillations around three different
rotation axés for the rectangular wing. We used two rotation
axes for the sweptback wing. In addition, we have the rudder
rotatlonal osclllations around the rudder leading edge for
both models, as well as simultaneous fin .and rudder rotational
osclllations for the rectangular wing. In this way, we were able
to investigate eight half wings with a total of 16 different
oscillation states using only two models, as shown in Figures
9a and b.

5. Electronic Measurement Technigues

The following quantities were measured:

1. pressure distribution over the model by the external

pressure measurement capsule using 280 lines;

2. pressure at the control fap by the pressure measurement
capsule installed in the wing; E

3. amplitudes of the model of six installed accelerometer -

transducers; and

13
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4.  amplitude at the model track or at the rudder by the
electrodynamic velocity transducer with respect to the founda-
tion.

Since about 300 measurement variagbles are obtained for each
pressure distribution measurement (150 measurement values
decomposed into real and imaginary parts), the measurement
sequence was automated. The switching for this was performed
by a control unit. The control unit directs the signals of the
measurement transducers through a switch to the recording part
of the apparatus; first these are dlrected to the vector compon-

ent measurement device. This device performs a harmonic analysis

by determining the coefficients

ay ) p f(t}.cosul.d(ul}. .

Car

T

(1)

0 siwtdwl) |
. _]J‘ L “‘ -
of harmonic analysis of the signal £{t). 1In the theory of

harmonic oscillations, one usually considers the coefficients

a4 and bl as real and imaginary parts of the complex amplitude.

The conversion into digital quantities i1s done by means of an
integrating digital voltmeter to which is connected a printer
through a code converter. The printer prints out the real part
and the imaginary part in sequence. At the sgame time, the
digital variables are transferred to punched cards using a punch.
In order to eliminate disturbances caused by turbulence and
slower fluctuations in the wind velocity as much as possible,
.tthmgasurement time or integration time was extended _to six

seconds for each.compcnent.

15
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The-switdhing process of the contreol unit iS‘triggefed by

an end of print pulse of the printer, which transmifs the signal
after each measurement of the imaginary part. The control unit
then either switches to another measurement instrument or switches
the scénivalves. The position of the 8ix scanivélves can be
controlled through lamps at the control unit. Since the printer
has a counter, if 1s also possible to determine at any time by

how much the measurement proecess has advanced within the recording

process.

The accelerometer transducers operate according to the
piezo electric principle. Their signals are amplifiled, inte~
grated twice, and then connected to the recording part by the

control unit.

An additional amplitude measurement is done by a velocity /25
‘recorder, which has a pickoff on a boom on the model track.
This recorder produces the required two reference voltages for
the vector component measurement device and uses a four compon~

ent filter.
The measurement sequence is the following:

The characteristic data of a measurement sequence, the
ampilitude, and the oscillation frequency, are input manually
te the printer. Then the contrel unit is turned on which takes
over the entire measurement sequence.  The following sequence
of measured value.transducers 1s maintained: acceleration
transducer, installed pressure measurement capsule, and central
pressure measurement capsule (140 times at A = 3.1; 120 times 3
at A = 2.5). At the conclusion of the measurement series, the
path amplitudes and the installed pressure measurement capsule

are controlled,

16



' The circuit of the measurement apparatus 1s shown in
Figure 10. The strucfture of the .device is shown in Figure 11.
The development of the apparatus ig discussed in detéil in
1331, especially the control unit.

6. Theories Used in the Comparison

6.1. Preliminary Remarks

The measurements 1n the 3 m wind tunnel of the AVA were
carried out with the purpose of comparing the results with those
of- linearized theory of oscillating 1lifting surfaces with
several simplifying assumptions. The term "1lifting surface®
means that the influence of profile thickness is ignored
(infinitesimally thin profile).

The first of these assumptions is the assumption of an -
incompressible liquid. Since the measurements are carried out
@E Mach numbers Ma £ 0.15, and since the relative density
changes due to the compressibility influencej&é}Ap/p = Ma2/2;
this simplification is Justified.

One important condition fof the theoretical solutions in 4g§
the subsoniec range are the so-called edge conditions at the
edges of the 1lifting surface: integrability of the pressure
at the edges and fixing of the geometricllocation of the downwind
on the 1lifting surface. Using thils latter condition, the influ-
ence of the friction boundary layer is considered phenomenclo-#i.
gically. Usually, according to Kutta, it is assumed that-

{smooth) departureAocqurs_aﬁ_t@%}tyail;?gJ§Qge?;aganh%gﬂgésupp—f F
tion is also used in the following. However, i1t is not the only
podsible assumption. One can assume an oscillating separation
point and, in this way, avold the deviations between the theory

17



Figure 10. ©Switching of measurement apparatus.

1- control unit; 2- test and switch line; 3~ external pressure
measurement capsule; U4~ topside: 140 pressure taps; 65~ lower
side: 140 pressure taps; 6- reference line; 7- internal
pressure measurement capsule; 8- 6 accelerometer transducers;

9~ 6 cathode followers; 10- strain gauges; 11— switch; 12—
electrodynamic execiter; 13- veloclty transducer; 14— power
amplifier; 15- carrier frequency measurement amplifier; 16-
integration amplifier; 17~ control amplifier; 18- frequency
counter; 19- frequency generator; 20- amplitude digplay; 21-
test and switching line; 224 measurement variable switch; 23-
oscillograph; 24— vector component voltmeter; 25~ reference
voltages; 26— four- -phase filter; 27- cutputs; 28- imaginary;
29- two separation ampllflers, 30~ switch; 31— switch command;
32- measurement commahd;|. 33- integrating digital voltmeter;

34~ code converter for printer and punch; 35- recording command;
36- punched card punch; 37- punching pulse; 38~ digital printer;
39- print puigse.

18



Figure 11. Arrangement of measurement instruments.

and the measurements. In the following, we will not make use
of this interesting possibility. It will be considered in future

Investigations.

For very large wing aspect ratios and (or) very fast
oscillations, the flow processes over a wing section in the
flow direction depend only slightly on those of an adjacent
sectlon, if the adjacent wing sections oscillate with about the
same amplitude. One can then approximately assume an independent
two-dimensional flow in each wing section. This is a so-called
strip theory, which was widely used for flutter calculations in
airecraft wings. In the following, we will also consider it as

a comparison.
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“Since-large electronic computers can be used, 1t is
possible to calculate sufficiently accurate approximate
solutions of the integr&l equation of the general (three-
dimensional) unsteady lifting surface theory.(see Section 6.3).
Such solutions may be considered for wings of small fo average
aspect ratios and they will also be used in comparisons with

measurements in the followling.

For 1ifting surfaces with large aspect rafios, the double
Integral calculation of the general lifting surface theory can b
be approximately reduced to a simple integral équation and,
therefore, to a lifting line method (see Section 6.4). In the
final result, only the vortex drag function T must be replaced
in the strip theory mentioned above by a functlon which depends
on the coordinate y and the oscillation shape of the wing. This
theory is also used as a comparison.

6.2. Two-Dimensional Theory

6.2.1. Integral representation of pressure

The two-dimensicnal theory has been ﬁiscussed in many
magazines and textbooks. We should especially like to mention
the baslic work of H. G. Kuessner and L. Schwarz [7] and the
table moncgraph of H. G. Kuessner and H. Goellnitz [147.

The two-dimensional theory has led to good results for the
large aspect ratio wing. Since we investigated wings with small
side ratios (A = 3.1 and 2.5) in our measurements, we should
expect considerable deviations. MNevertheless, the two-
dimensional theory 1is of interest because 1t makes c¢lear what
"{mprovements must be made to the large aspect ratio theory to
be discussed below.

20
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Figure 12. Deflection of segment profile,

We will use the coordinate system according to the
aerodynamic standard 9300 (Figure 12). The pogitive x axis
points in the directlon of flight, that is, against fthe incident
flow direetidQJand the positive 2z axis points downwards;*

We wlll first consider a'segment profile with the half
chord c. We will introduce elliptical coordinates according to:

" x = ¢ccoshucos® 3 C0su<o -, (2)

z = ¢ sinhu sin@’ i -7« 09s7w

We have u = 0 along the segment profile. Along the leading
edge, © = 0 holds and we have & = 7 at the tralling edge. In
addition, we assume that the reduced frequency is

<z,

s (3)

We assume that the segment profile carries out the oscillation
motion r(x, t) and that u = 0, and that the downwind is

¥In [9], the x axis is the reverse of this.

21

/31



w(x 0,1 = (E ] V—E—)-) Ux 0 = waa} F:xput

I o 4y

and that there 1s the pressure jump

‘Ap = I-Emhp(x,:z,t) - hm p(x z; t) = V ]T(B) exp ut -.
T z—=+0 o z—-—-D_ o S. - p” AR (5)
The pressure jump defined in Equation (5) .1is, therefore, the
normal force per area unit, which the oscillating lifting surface
exerclses on the liquid dn the positive z direction. This
definition is appropriate in aeroelasticity and is usually used.

Using the variables used above, according to H. G. Kuessner
[8, 13], we obtain.the following integral representation for
the reduced pressure jump II at the 1lifting surface u = 0, which

satisfies the Xutta condition:

. 7

( T{ﬁ) = --?; } .W(e.'].SinB'._‘dB' . {((,;}* 2 _..a.._, Glo, 8 91)

o sinB' am (6)
where
[ e\"p{ u* coshu) GG Bl{u , 0} du
o ,
l(u*}
- 3 ' . (7}
j xp{ w* coshu} G9 El(u,G 0) du - ‘
For incompressible flow, the Green function becomes 8
P coshi - cos(8+ ) ¢

4 coshu - cos(8 -y -
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'ahé.%Hé'vortex entrainment function

' .Ku{u_.:*) - K ()

A i S R (9)

thﬁf4ﬂihﬁi

K K, are modified Hankel cylinder functions.

0”71

The reduced pressure jump I is found from the integral
equation C62Jand from Equation (39), 1t is seen to be constant
everywhere for constant and positive downwind.

6.2.2. Wing rotation

For wing rotational oscillations around an arbitrary

rotation axis which 1s specifiéd by Xq T €C, from Equations
(4) through (8) and with
TR SRR (92)

we obtain the following pressure distribufion in the chord

direction:

:_zi.AJ;(ﬂ..B)f = S’V v2E T, {8) exp u"
R R e T Y

(10)

" _“+__ (2 W ely) +__4 w*) 5in 0 - w*z_sin'e cosB]exput

In Eguation (10), e€(¥y) is the distance of the rotation axis from /33

——

the wing center,

Ka (11)
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By integrating Equation (10) over the entire wing chord, we
obtain the following for the aerodynamic force amplitude along
the strip of width dy
dL = oV cdyB - vk . ] W
o T . (12)

and the following for the moment arcund the front neutral axis
V' .. ’ - .. ) I
aM igvzc;dyﬂ-_rm-'

LN ] N (13)

the thecretical derivatives are

kbf(1+T@n)u44§f§te@n#u*+u¥;w;_\ (14)
and
mb = W + %0*2 c(})-l-%u‘z ., \ (15 )

For a rudder with the rudder leading edge

| o gl

_ cosgp = M (<16),
T

from Equation (10) if we integrate from the limit to 7, we
find the rudder aerodynamic force caused by wing rotation acting

on the strip of width dy

and the rudder moment around the rudder leading edge
with the derivatives . 7 /34
1r = (LT O r ety by vur b, a
C R AR REY _
+ £(y) t.:*z[vr-lp-i-!'-_sin 2¢+S—M)' (19)

z T !
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and

=

ir(ll_.+_AT[u#]) (‘1‘,+ “;-’:+ o s(;)) éq +%.,,¢ 3, o o

+ s_i'mp 'c:)s.p (—1-1;,- sinztp +%)} T

The auxiliary functions E@J@] are shown in the appendix.

6.2.3. Rudder rotation

From Equations (4) to (8) in the case of rudder rotational
oscillations ardund the rudder leading edge and with

e
R s BRI °'.__'Jiwhen\ x> 200)
(x,t} = Ce_ (x, -x)expwt | With €_= - ' . 20a)
. LX - RR . ) S R 1, EWhEI:l x = xR.f
iwe Find the pressurd distribution|
llﬁp'[é:; ) = -1~'g.7.VZIC T-té) exp w‘tm :
ST R UL Co
L= ;_g‘v cl(+ ,T‘(u-*]}rcl} (} + Tr[.u*)i} ufﬂ'cz - (21)
the ch are abbreviations
. 3 .
e = By (22)
1 ‘
ez =z baot s |
: (23)
> - 9.‘-1-;'.~ + o ;
T g =-2slngeclgy+in —-——3-1 - Zg;{(g_q‘; v (24)

25

. Vm;z .{(r' - ) (%+ E(VY)‘ cgé@) + ;I-y) sim‘p(colszgp +% sihzﬁ) o (20).
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e | oo (25)
' - cos (8 :
+ 2{cosy - cosel)jln-:——_'—z-%——-.:&t% o
' Tcs = {7 - ) Zéos¢+ sing} sin@ - (» -g,p.) sin@ cos 8 (
(26)

‘ st 1 costory .
.f(cosq)-cgsﬁ] ,';-mﬂ—_-——y_l-zzitu-;p; S i }

When we integrate Equation (21) over the entire wing chord, we
find the force amplitude acting on the strip of width dy

(27)

'dL'fgvzédyG-wkc

and the following expression for the amplitude of the moment
around the neutral axis
dﬁ=gV?3d§erm

e

(28)

When we integrate over the rudder chord, we obtain the rudder

aerodynamic force

; @ﬁ".'a_.'g_vz c dy._C‘ .11 r’c" {(29)
and the rudder moment around the rudder ieading edge
N = pviePayC (30)
The derivatives are
. - " 1 . ‘- Lot - } . . . 1
Rl U TNy dger f e byrgetd L (31)
o 1 n ":: ' S
I‘mc = @5 + Eu* ¢6+ IU$2¢7 . . . - . o (32 )
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(33).

o 1,2 :
M PR T S

s n, = {1 + Tlow) @;1 + %“# P, %q’a. * ‘15_1'0 * %”* 43-11 _”%,”*.2 ‘I’lz :

(34}

f

©6,2.4, Simultaneous fin and rudder rotation

In the case of simultaneocus fin and rudder rotational
oscillations, usually there is a phase displacement between the
two oscillation shapes. 8Since the resulting pressure distribu-
tion can be referred to the motion of the fin, we must write:

o A’p(e,h,cf)‘ =9 vin *rb'(m e.xp-t.;t v C T (8) exp (wt + 6)1 \ (35)
In Equation (35}, 6§ ig the phase angle between the two oscillation

shapes. IFor the special case § = 7w, we find

“Bpy(0,5,0) F g VBT - CT ] et \ u (36)

~
-3

6.3. Three-Dimensional Lifting Surface Theory

6.3.1. General integral equation

The general integral equation of the first kind for an
oscillating 1lifting surface in a subsonic range was given by H. G.
Kuessner [9] and also see [13]. Here we will restriet ourselves
to a plane lifting surface in an incompressible flow. According

to Equation (4), we assume that

:Whﬁﬂﬂlgﬁﬁhdfﬂﬁm.] (37)
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is the given downwind on the lifting surface. Accordiﬁg to
Equation (5),
Ap'.= 7 lim p(x y,z,t] - lim -p(*c y,z t] =9V Tixy exput \ (38)

% —=t0 o z-—-l'J

1s the pressure jump over the 1lifting surface and w is the
complex osclllation frequency. The physgical meaning of this
- pressure jump was already discussed above. Then the integral
equation of downwind at the 1lifting surface z = 0 is

B s -
- wlx,¥y} = - lll; N dx.' dyl {x', ¥ exp - (‘( )..I)
4 . ‘_ g Xh(y') ] .
TdtT :
‘ evp(—Jy y"t)+ '
“h '__‘A_V.VV'y—y'_I {f ;t +1 e (_39)
‘L - (:\-('—X) cxp'{%[_f—y'l 1.6) I i
(y-y )2V -x)2 e (y-y2
Here we have
.i‘ﬁz';¥"5?:}; ' .
-_0: |y'_i-‘y'l (40)
The integration over y' is divergent at the point y' = y and /38

must, therefore, be done in a special way, which has been
developed by C. E. Watkins, H. L. Runyan, and D. S. Woolston [1],
and others,

6.3.2. Solution methods

Based on [1], B. Laschka [3] selected a solution method
which was already used by E. Truckenbrodt [35] and H. Multhopp
{36] for calculating steady aercdynamic force distributions.
The solution method uses the Glauert trial solution
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Ty <3y exmno
(PR

(41)

with the normal distribution

3

T;{l ~2U)+ T (1 - 2%
h (%) + 2 ent - #

. 42)
® Vu.,_-_x)x EE (

Here the functions-TP(l - 2%) are the Tchebyscheff polynomials

of the first kind with the argument 1 - 2y with the three-

dimensional coordinate

(43)

We have the following relatlionship which involves the complex
coefficients a? and the complex 1ift and moment coefflcients:
‘ca(y) a-f— f tT(}'.y_} dx_i= .aﬁty} "{_'.:.;' (_llll)

. FV o
z / 'ﬂ'(x.y) !:xm ~x)dx
FA (45)

= g X - 1) adty) + aftyl) .

cm(y) B .

The moment derivative refers to the X axis
W (46)
! 7 - L .

m

The trial solution for I(x, ¥y) must be introduced in Eguation
(39). The difficulty now consists of presenting the kernel
function in such a way that a numerical sclution method can be
used. We cannot discuss the details of the method discussed in
[31. We will only give the results here, which produce;ftwo

29
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‘comﬁiex équation systems for the symmefric and antisymmetric
pacillation shapes.

For the symmetric oscillation shapes, the downwind at the
lifting surface is expanded as follows:

=

m+l

7 RT3 "_: _ f’iré";"
. W(xp,yv),fz Z'Emﬁtﬁ B c R L o (47

and for the antisymmetric oscillation shape, it 1s expanded in

S S S 43
,“ﬁ_("p-‘y”l - : 'érndrn T o

r=0 n=1 : p=0,1 ..., R

The downwind or the amplitudes are to be taken at the discrete

polnt n and
40

S x T

o (49)

3 p=0,1,,.., R

where n = y/s. The 5rn and érn’ respectively, are the desired

coefficients in the expansion equatioé%(ﬂ?) (48) at the discrete
point n = nn

s

- . T ‘ )

The coefficients d;ﬁ consist of universal guadrature constants

and of influence functions, see [3]. The quadrature constants
are tabulated. The influence “fuctions must be caleulated for
each wing shape and reduced frequency. In the calculation, we
geleet three points in the chord direction and ten stations in
the span direction [40].
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6.4, Theory of the Large Aspect Ratio Osclllating Lifting

- Surface

6.4.1. Integral equation of the Iarge dspect! ratio

1lifting surface

The integral equation for the theory of the large aspect
ratio oscillating 1ifting surface was established by H. G.
Kuessner [91, see also [10 — 13]. In the case of large aspect
ratioc lifting surfaces, the parameter given in Equation -(40)

(51)

e .t ='XI-X'-".-1

q colyeypl

is usually «1 ét most points of the 1lifting surface. Therefore,
we may approximately set
fﬂ%w;-\ N1
LS o (52)
In this case, the lower 1limit in the integral equation (39)
becomes zerorand the second term in the bracket drops out.
Assuming the characterlstlc function
7 x(y) 4 . O
fK@"fﬁ ’“Y’“ﬂ'*ﬁdx i (53)
S oxly S :
and the sgpecial downwind distribution

w {x,y,0,t) 2 Ty P
Wy ¥.0.8 V?ﬂﬂeW“U*v?

(54)

we then find the following simplified integral eguation for the
characteristic function from Equatlon (39) by using partial
integration

Muwm§u+i §s (wwn“??f:j (55)

B
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Here-Ke is the characteristic function in the two-dimensional

flow. The function S is defined and tabulated in [9, 12, and 15].

For w = 0, we have K(y) = I'(y) (eirculation) and 8 = 1. Equation
(55) then becomes the integral equation of the so=zcalled Prandtl
lifting line theory, which 1s also a 1ifting surface theory.

Inoorder to be able to treat arbitrary downwind distribu-
tions using Eguation (55} and not only those having the form
(54), another approximation is required;. From the given downwind
we will subtract the downwind W

gg according to Equation (54),

1
which has just the right magnitude so that the characteristic
functions for w and Wl in two-=dimensional flow colncide. The

pressure produced by ﬁi is calculated according to Eguation (55).

The pressure, which is produced by the downwind difference, is
calculated according to the two-dimensional theory.

As shown in [12], the approximation assumptions amount to

replacing only the function T{(w¥) by the modified vortex entrain-

ment function _
S TRy f,Imm)+gmﬂkg 
'Tl(w*,y} = - . - 7 = 07 — :
S T W Tl - Len]T L) - 1 (56)

in the two-dimensional solution [Equation (6)J:menhtdoned above.
I0 and Il are the modified Bessel functions.

6. 42, Solution methods

The characteristic function in the case of two-dimensional
flow is

= B T ) I
K3 = 7 ot wiy) - Sy
T . u*[r{ﬂ(u*)_a-l{_l(u#}] o

(57)
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for

CNyB s aBrEm AT L 0
. i 3 ) ‘ 7— . g . ;] (‘58)

for wing rotational oscillations around an arbitréry rotationr
axis and . , L -

(59).

for rudder rotationtaround the rudder leading edge.

In order to solve the integral eguation (55), 1t is useful
to use a harmonic trial solution. We set

y = scosy o
S _ (60).
R
L'Ku>=:E:;§fﬁgnw-,<
R A (61)

Then, the integral equation (55) finally becomes the algebraic
equation o 7 S o
| R o |
VKE(S cosu;) = Z kn[% ali-n'n‘l&l. + % flw*) Si;(ﬂ.wl)])' (62)

"n=1

Sn(Q, ¥} and f(w¥*) are auxiliary functions. The functions

S, have been calculated in [15]|for n = 1 to 19: @ is the

rediiced frequency referred to one-half of the span
_was
_giv qW (63)

In order fto determine the desired coefficients kn in Equatiocon
(62), it is necessary to substitute N discrete values ¥ = Wm S0

that we find a system of N linearized, inhomogeneous; and complex
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équafions for the coefficlents kn. Nine points cos ?m are
selected for the calculation:

cos W= 07 043 Gpds 0,5; 0,65 0575 Opf; 0,9: 1,0 64)

For these stations, we c¢alculate the modified function Tl

with which it is then possible to determine the pressure distri-

bution at these sections, Since the model only has seven sections

with pressure taps, it would have been sufficient to carry out
the calculation for these seven sections. The determination of
the global forces becomes more accurate the more stations cos ¥

m
are used.

As already mentioned in Section 6.4.1, the solution for the
large aspect ratio theory differs from the two-dimensional
theory only because the functions T{(w¥) of the two-dimensional
solution must be replaced by the modified functions Tl(w*, v)

according to Equation (56). With this substitution, we can,
therefore, apply the expression for the pressure distribution,
for the aerodynamic forces, and moments of Section 6.2 in the
theory of the osclllating large aspect ratio lifting surface.

The three theories mentioned were programmed for the IBM
7040 computer installation of the AVA. The author wishes to
thank Mr., H. Triebstein and Mr. X. Lohmann for the programming
work [4O, 417.
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7. Measurement Results

7-1. Oscillations in Quiet Ailr

Figures 13 and 14 give an example of a pressﬁre distribution
for oscillations in quiet air. These are rudder rotatlonal
oscillations of the sweptback wing [32]. In addition to the
measured values, we also show the limiting case of the fwo-
dimensional theory for V = 0 and, therefore, for |w¥| = «». From
Equation (21), we obtain the following for this limiting case

f AplD(B.Fi} = 3 ot c?cﬁrcsj exp wt ' (65)
where HCB;is.given by Equation (26).

The following complex pressure derlvative for the rudder
rotational oscillations 13 defined at V = 0 for purposes of

plotting: ‘ o :

ST A e, O

0 e e P cexpntt (66)
In Equation (65), we have Hgo =0, i.e., the oscillating air mass

is in phase. with the motion, according to the theory.

Iin spite of the very low pressures.(order of one-tenth of
a millimeter of water column), the scatter in the measured value‘
is small. The requirement for identical dynamic resistance
behavior of the pressure lines is apparently satisfied for both _ﬁg
models. If we consider the fact that the plane theory cannot
conslder the pressure equalization at the end of the wing, we
can see that the measured values have the same tendency as the
theoretical prediction. This 1s also {rue for the imaginary

part, because the measured values are close to zero, whereas
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Figures 13 and 14. Distribution of the osclllating air mass
o i for rudder rotational oscillations of the sweptback
' co ol I+

‘Wingzﬁﬁ?ﬂ.h‘viﬁhzl -0- measurement ; — two-dimensional theory.
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they should be exactly equal to zero according to the theory.
Additional examples for the pressure distributions for oseil-
lations in quiet air are contained in [29 — 32].

7.2. Steady Flow

The boundary layer thickness aleng the wind tunnel plate is
first determined in preliminary experiments, The height of the
fuselage-like body which frames the model root (see, for example,
Figure 6) is then seiected s0 that it penetrates somewhat above
the maximum boundary layer thickness. Outside of the boundary
layer, the free Jet had a great deal of turbulence and direction
fluctuatlons in the viecinity of the plate, so that flow separa-
tion occurred at the lowest section in the vicinity of the nose
of the model. Therefore, we did not consider the lowest section

when integrating the pressure distribution over the wing area.

In order to also obtain the derivatives for the limiting
case w¥ = 0, 1.e., steady flow, we measured the pressure distri-
butions for variocusnrangles of attack o of the wings as well as
for various deflection angles £ of the rudders for retracted fin
[37]. By integrating the steady pressure distributions over the
wing area, we were able to determine the 1ift and moment
coefficients and, therefore, their increases with angle of
attack a for the various configurations. The 1ift and moment
increases correspond to the real parts of the unsteady deriva-

tives for the limiting case w¥* = 0, for example
: de e e

€4 . T
=t Mmook = w kL
da | wE —=0 ' (.67)
de
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In'Equétions (67) and (67a), the quantitles c, and ¢y are the

total 1ift and total moment coefficients of the wing. The global
aerodynamic force and moment derivatives for wing rotation, kB

and Mp,lare formed as follows:
ke = kb +'1k;§ =;_1;] k,(y) dy (68)
' ' _ e :
t 3 ’ -
my oy ot [ (592)
. . . 0 :

In Eguations (67) and (67a), only the real part of the derivatives
is contained, because the Imaginary part must vanish for w¥® = 0
according to definition.

Figures 15 through 22 contain 1ift and moment coefficients
of the investigated wings. - The moments are referred to the
neutral axis. In addition to the measured values, we also show
the variationswwhichyaré found from the three discussed uﬁsteady
aerodynamic force theories for the limiting case of steady flow.
It can be seen that the lifting surface method, called the three-—
dimensional theory in the figures, produces an exceptional
agreement for the 1ift coefficients, Figures 15 to 18. However,
the agreement 1s not as good for the moment coefficients, Figures
19 to 22. Here the measured values are considerably above those
of the theory. The deviation must‘be attributed to the influence
of the finite thickness, which was not considered by the theory.
The results presented here confirm earliier measurements of
. Scholz with rectangular wings of various aspect ratios [43].
Similarly. large deviations can also be found in measuremehts

under plane flow conditions [447,
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Figures 15 and 16. Lift coefficient values of rectangular wing.
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Figures 17 and 18. Lift coefficient values of sweptback wing.

o- measurement, profile NACA 0012; -~ two-dimensional theory;
—+«- large aspect ratio theory; — three-dimensicnal theory.
(all theories — flat plate).
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Figures 19 and 20. Moment coefficient values of rectangular wing.
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Figures 21 and 22. Moment coefficient values of sweptback wing.

0- measurement, profile NACA 0012; —— three=dimensional theory,
flat plate.
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Tables la and b contain the nﬁmerical values of the increases
or the derivatives, respettively. .The:table contains the measured
values which have been corrected for the finite Jet diameter of
the wind tunnel. The corrections are very small. The measured
values for rudder deflection are given in [37].

'EQ
e
ke

7.3. 0Oscilliatlons in the Case of Incident Plow

7.3.1. Preliminary remark

The wind tunnel measurements with operating models were
carried out for the reduced frequencies |w¥| = 0.13 to 0.76.
The variation of the reduced frequency was done by changing the
oscillation frequency v in therrange between 3 and a maximum of
18 Hz at a constant stagnation pressure q = 100 mm WS and,
therefore, constant Reynolds number Re =~ 1.6 ° 10%. It was also
done by reducing the stagnation pressure for a constant oscil-
lation frequency v = 6 Hz. The lowest Reynolds number was
0.5 ° 10%. The oscillation amplitudes of the wings amounted to
between 0.2 to 0.8 degrees. The rudder rotation oseillations
had amplitudes of up to 1.6 degrees.

Dimensilonless pressure derivatives were selected for
plotting the unsteady pressure distributions, and for the
wing rotation according to Eguation (10}, we use

i . _pe.B)
T, Tl - AR

whereas for the rudder rotation, according to Equation (21), we

use
 Aple,C)

T'Q;ﬁ"‘+i—r" = 3
c. ¢ 3 oVl Cemput

(70)
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TABLE 1aﬂ1LIFT TNCREASE de,/da = ﬂ%é”FOR WING AT ANGLE OF ATTACK.*¥*
Lﬁf)‘ — m“ﬁ ‘7Ti“j "i"1 — VT-Thfeé:dlmen510na;_1Large aspect ratio Two-= dlmen51onal
P : : Co 5 : Correcte& \{
S ras B theory (lifting Lﬂﬁory (Iif€ing
1‘;EEE§J ' ‘.~§EE§EEEEEEEJ ‘measurement | isurface jtheory)” ‘Iine theory) ° theory. C
: Rectaﬁﬁ'g}ﬁlar' wiﬁg‘p\:_'n; rlaas : 7:&,723_*'-?' N 3,214 ‘ ©870” - 6,28 27 \
{ Rectangular wing =25 | 200 : 2,08 | = 2,85 y 3,40 : 628 f
i Sweptback wing| A= L 3,08 . ' 3,13 a0 o 3,67 .| G.28 ‘:
Sweptback w:.ngJ A=z 0l 2,80 Conee [z . s b 6,28 l‘

'TABLE 1b. _ MOMENT INCREASE de,/da = mml |OF WING AT ANGLE OF ATTACK.¥

B .
e R ‘ ed- > |Three~dimensional Large aspect Tatio|qu,_ ‘
Ming | .. -{|Meagsurement! —CZ;;eCt At [theory (lifting L' ' theory (lifting 7  Two dlmens—lonal‘
CEEs ) [ —————— Imeasurement surfac:e theory); | —~1ine theory) theory f
[Rectangular wing |A=31 | 0,200 | omz 0,086 0 0"
‘Rectangular wing [A-2,5 || 0,230 ; 0,233, | 0,094 0 o
Sweptback wing | A=3,1 | * 0,146 | 0,148 |- 0,078 0 0
Sweptback wing|: A=2,5 0,160 | o162 | 0,084 0. 0
- ' R =
. . N i
. : N N =0 : o LoD LD itacx

*[Translator's Note: Commas in numbers indicate decimal points.]



In the case of simultaneous fin and rudder rotation, two
amplitudes are involved. If the phase angle between the two
oscillation shapes is § = m, then according to Equation (36)
we find the following dimensionless and amplitude-dependent
pressure coefficient

SR ApﬁeJLCJ

N g?!fi# =;:;:;;; ;.‘ (71)
The measured local derivatives are found by integrating the
measured pressure distributions at the seven (for the aspect
ratio A = 3.1) or six (for A = 2.5) model sections (see Figures /52
3.and 4). The global derivatives are obtained by integrating the
pressure distribution over the entire wing and rudder area. In
order to distinguish the 4ocal derivatives, the global derivatives
have large letters as:igsubscripts, see Equation (68).

The local moment derivatives for wing pitch oscillations
are referred to the 1/4 line. The corresponding global deriva-
tives refer to the neutral axis, that ﬂ§;theraxis through the
geometric neutral point (see Figure 4). The wing and rudder
moments are positive for a tail load.

We should like to remark,|in conjunction with the following
pressure dlstributions, that the measurement examples presented
represent a relatively small selection of the results contailned
in {29 — 32]. A complete reproduction of them would go outside
the scope of this report.

7.3.2. Wing rotation

Figures 23 to 28 show the three measured pressure distribu-
tions for harmonic rotational oscillations of the rectangular
wing with a side ratio A = 3.1. The examples given are disting-
ulshed by the position of the rotation axis (see Figure %a). The
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Figures 23 and 24. Pressure distribution m;=1¢4ﬂv; over

reéctangular wing for rotational oscillations around axis 3;
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Figure 25 and 26.
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results of the lifting surface theory according to [3] are given
in addition to the measured values, and they are referred to as

the three-dimensional theory.

As already mentioned above, there was partial flow separa-~
tion in the vieclnity of the tunnel plate. This produces an
irregularity in the pressure variation of Section VII, especilally
in the real part, see Figure 25 for example. In addition, the
pressure distribution is usuzally continuous. Ohly the pressure
distributions for rotational oscillations around axis 1 represent
an exception to this. Because this rotation axis is near the
wing leading edge, we find only small oscillation amplitudes
here, so that the tunnel furbulence appears more pronounced in

this case {(Figures 25 and 26).

The comparison with the three-dimensional theory shows that
the measured real parts have a somewhat steeper variation than
according to theory. Especially in the outer wing segments, the
measured values devliate relatively strongly from the results of
the theory in the vicinity of the trailing edge, because here
negative measured values occur to an increasing extent because
of the three-dimensional flow around the profile (see Figures
23 and 25). Only at higher reduced frequencies can one find a
better agreement (Figure 27). In general, we can evaluate the
agreement between the three-dimensional theory and the measure-
ment results to be a good one, and one reason for this is that
the deviations described above cancel to a certain extent when
we integréte over the wing chord. As far as the position of the
rotation axis is concerned, we find that extreme rotation axis .
positions such as the axls 1 cannot be evaluated as favorably
as rotation axes in the central part of the wing (for example,
see Flgures 23 and 25). Therefore, we should expect an improve-
ment in the theory for extreme rotation axis positions by intro-

ducing a large number of support points in the chord direction.
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The conclusions reached for the side ratio A = 3.1 also
apply_fof the side ratie A = 2.,5,las discussed iﬁw[jOjii s

In order to be able to compare the measured results with
the large aspect ratio theory and the two-dimensional theory,
two pressure distributions in the section IV of the rectangular
wing with A = 3.1 are plotted separately, see Figures 29, 30a and
b. It can be seen that, in the real part and as the reduced
frequency |w#| decreases, the three-dimensional theory is
superior to the large aspect ratio theory (Figure 29). If there
is a large reduced frequency, the converse is true (Figure 30a).
No noticeable differences appear in the imaginary part as the
reduced frequency is decreased. For a large fw¥|, the three-
dimensional theory is clearly superior (Figure 30b). This
resulft can be considered to be typical for other sections as
well. However, one must consider the fact_thaﬁ the ftwo-
dimensional theory wlll have considerably larger deviations in
sections close to the end of the wing, because 1t only applies
for plane flow.  This clarifies the representation of the local
aerodynamic force derivatives in Figures 31 and 32. Since it is
a wing with a constant chord, the values of the two-dimensional
theory do not change over the span. The large aspect raﬁio B
theory, as well as the three-dimensional theo;jﬂagree:xwell with
the decrease of the measured values towards the end of the wing.
This is also true for the smaller aspect ratio A = 2.5, see

Figure 32.

Figures 33 to 36 show two pressure distributions for
rotational osclllations of the two sweptback wings A = 3,1 and
2.5, respectively. The two rotation axes are perpendicular to

the flow direction, see Figure 9b.
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Rot atlon ax1s 2 [

Figure 29. Pressure distribution ﬂ =7 +1E) through section IV
of rectangular wing for rotational 030111at10n around axis 2;

A= L,V=555Hz Jew?®} = 030%\0-'measurement, _ three—dlmen31onal
theory, ~-~ Jlarge aspect ratio theory; --- two-dimensional theory
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. Figure 30a. Pressure distribution
.q;=n_+i'2 through section IV of
recrtangular wing for rotational
oscillation around axis 2; real
part qﬁ\m;s.n v = 16,06 Hz; lw'l = 0,744
O- mEéasurement; — thAree-dimensional

~ theorys --- large aspect ratlo theory;
-=— two-dimensional theory.

Figure 30b. Pressure distribution

T, =T +im in sectlon IV of rectangular

wing for-rotational oscillations

around axis 2; imaginary part-m:
Ad3,1; v =16,06 Hz; lw'| =0, 744

o- meagurement; -—- three-dimensional

theory; --- large aspect ratio..thecry;
-—= two~dimensional theory.
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Figure 31. Aerodynamic force distribution in the span direction
over rectangular wing with rotational oscillations around axis

23 jA=3,1; v=3Hy lwPl=0,138 | ; 0o— measurement; —— three-dimensional
theory; -+~ large aspect ratio theory; —--- two-dimensional theory.
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Figure 32. Aerodynamic force distribution in the span direction

over rectangular wing with rotational oscillations around axis 3;

QA 2,5; v =10 Hz; 1w‘g~m4a@ o— measurement ; —-— three-dimensional theory,
=~ large aspect ratio theory; --—- two-dlmen51onal theory.
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Figures 33 and 34. Pressure distribution §waﬁ;+imi over swepht-
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The disturbances at the nose of the model caused by tunnel
turbulence are more pronounced for the sweptback wing than for
the rectangular wing. Here again they appear more pronounced at
the lower oscillation frequencies than for the higher ones [31].
The agreement with the three-dimensional theory is about the

same as for the rectangular wing.

Figures 37 through 39 again show the pressure distributions
-of the individual sectlons in which again we show the values of
the large aspect ratio theory and the two-dimensional theory.
Considering the real part, 1t can be seen that the wvariation of
the three-dimensional theory is always below the one for the
other two theories. Here again we have no basic changeé in the
span dlrection as Figures 38 and 39 show. On the other hand,
the imaginary parts do not show this uniform behavior. As
already found in Figufe 36, if the rotation axis is in front,
there are clear changes in the theory in the span direction in
the reglon of the nose. Depending on whether the rotation axis
for the individual sections is selected inside the wing or ahead
of the leading edge, we find a decrease or increase in the
imaginary part according to the three-dimensional theory.
Figures 38 and 39 show how the imaginary parts according to the
two-dimensional theory and according to the large aspect ratio
theory differ. In the two-dimensional theory, there is also an
increase gt the nose caused by the rotation axis 1n front of it,
but it only ocdurs for a large distance of the‘rotation axis
(Figure 39). The large aspect ratio théory'has the opposite
characteristics, because here the imaginary part at the nose
decreases more strongly towards the end of the wing. This
behavior is not in agreement with the measured results. This

can be traced to the influence of the modifled function Tl’

which makes itself very pronounced in the imaginary part. Thils
becomes clear in the representation of the theoretical pressure
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Figure 39. Pressure distribution M, * W *i%, | at section II of
sweptback wing for rotational oscillations around trailing edge;
A=2,5 v=81z; |w*'=0,358] ; o- measurement; —— three-dimensional
theory; ~-—- large aspect ratio theory; -~-- two-dimensional theory.
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distribution in the span direction Tor the three theoriés;nas
shown in Figures 40 and 41. In Figures 40 and 41, we show the
theoretical pressure variations over the semlspan for a number

of stations in the chord direction. Since the two-dimensional
theory results in straight lines for all stations, only one
station is shown in the reglon of the leading edge and the tralil-
ing edge. The real part shows a good basic agreement between

the three-dimensional theory and the large aspect ratio theory
{(Figure 140). The imaginary part, on the other hand, shows the
deviations mentioned above (Figure 41).

Figures 42 and 43 show two aerodynamic force distributions

in the span direction.

Figures 44 to 53 show the global aerodynamic force and
moment derivatives for pltech oscillations of the rectangular

wings and of the sweptback wings around various rotatlon axes.

The representation of the aerodynamic force derivatives
shows that, by displacing the rotation axis from the leading
edge to the center of the wing, a flatter increase in the
imaginary part is produced. For all of the conflgurations, one
can see that'.there is a relatively good agreement between the
meagsured values and the three-dimensional theory. Here again
the large aspect ratio theory alsoc shows good results. As
expected, the deviatioﬁﬁof the tondimensional theory are
especlally large for the real part.

The moment derlvatives are referred to the neutral axis.
For this reference axls, the large aspect ratio thecory does not
introduce any change over the two-dimensional theory, because
then the T function is not contained in the formulas [see
Equations (15) and (32)]. There is quite good agreement between
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F}gqrg_&@. Theoretical pressure variation

T, + AT, in span direction over sweptback

Ty = T, 21T,
wing 1or rotational oscillations around

1ead1ng edge; real part M A=25; lw*l=0,35

S three ~dimensional theory; --+—- large
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Figure U41.  Theoretical pressure vari-
ation W -H5+1n in span direction over
sweptbacx wing Tor rotational oscillatlons
around leading edge; imaginary part

A=2,5 lw*i=0,3580  ; —— three-
aimensIOnal theory; ~-- large aspect
ratio theory; --- two-dimensional theory.
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Figure 42. Aerodynamic force distribution in span direction
over sweptback wing for rotational oscillatlons around leading
edge A=3,1; v=6Hz; lw* =0,260 | ; 0o- measurement; —— three-
dimensional theory; --- large aspect ratio theory, ——= two-
dimensional theory.
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Figure 43.
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Figure 44. Global forces and moments of the rectangular wing
for rotational osclllations around axis 1. o

o- real part } measurement at -—— three-dimensional theory
A- imaginary part Re%f&ﬁmﬁﬂ -+— large aspect ratio theory

we— tWo-dimensional theory
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Figure 45. Global forces and moments of the rectangular wing
for rotationalroaciliatiohs around axis 2.

- o—-real part - } measurement at —— three-dimensional theory
A- imaginary partf re=is 10 -+~ large aspect ratio theory
* --- two-dimensional theory
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Figure 46. Global forces and moments of the rectangular wing
for rotational oscillatlons around axis 3.

"o- real part } measurement at -— three-dimensional theory
A- imaginary part .Re=h649ﬂ ~-— large aspect ratio theory

-— two-dimensional theory
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Figure 47. Global forces and moments of the rectangular wing G
for rotational oscillations around axis 1.

o- real part measurement at -——— three-dimensional theory ;
A~ imaginary part 4R9€fﬁ-m§) © —+= large aspect ratio theory
N : -—— two-dimensional theory
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Figure 48. Global forces and moments of the rectangular wing
for rotational oscillatlons around axis 2.

0- real time measurement at —— three- dlmen51onal theory
A- imaginary time }né=1ﬁ-m5| -.- large aspect ratio theory
T --— two-dimensional theory.
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Figure 49. Global forces and moments of the rectangular wing
for rotational oscilllations around ax1s 3. o

o- real time } measurement at —— three-dimensional theory
A- imaginary time Re=usqoﬂ —+«— large aspect ratio theory
-—— fTwo~dimensional theory
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Figure 50. Global forces and moments of sweptback wing for
_rotational 0501llatlons around leading edge.

o- real part } measurement at ——-three—dlmen81onal theory -
A- imaginary part 1ﬂﬁ10ﬂ -.—- large aspect ratio theory
e- real part }.measurement at ‘———-two—dimensional theory

A- imaginary part f Re=1,45-10% - o, 57.10% '
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Figure 51. Global forces and moments of sweptback wing for g
rotational oscillations around trailing edge. i
.0-..real part : measurerr%ent at —— three-dimensional - theory
A— imaginary part ,65:10" = const| —.- large aspect ratioc theory
e— real part }measurement at’ -—- two-dimensional theory
A- imaginary part § Re s1,45.105 - 0,57. 106
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Figure 52. Global forces and moments of sweptback wing for
rotational oscillations around leading edge.

o- real part - }measurement at, —— three-dimensional theory:
A- imaginary partf ke s 1465 10 -cmmt[ —-~ large aspect ratio theory
e—- real part measurement af  -~-~— two-dimensional theory

A- imaginary part Re = 1,45 10° - 0,57.106 |
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Figure 53. Global forces and moments of sweptback wing for
rotational oscillatlons arcund trailing edge.

- 0- real part }measurement at —— three-dimensional theory
A~ imaginary partt Re-lﬁslo =Eﬁﬁsu -.— large aspect ratio theory
e— real part measurement at --- two-dimensional theory

A- 1mag1nary part Re=1.4510341571031
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measured values and the three-dimensional theory for the moment
derivatives. It 1is somewhat better for the rectangular wings
‘than for the sweptback wings.

The representations of the global derivatives of the swept- /83
back wings also contain measured values obtained at various
Reynolds numbers. In these measurements, we did not vary the
oscillation frequency as before, but we brought about a change
in the reduced frequency by dropping the stagnation pressure at
a constant oscillation frequency of v = 6 Hz. Increasing reduced
frequencies, therefore, means/decreasing Reynolds numbers. The
Reynolds number was reduced from Re = 1.65 ° 10% for |w¥| = 0.270
to Re = 0.57 " 10° for |w*| = 0.760. As Figures 50 through 53
show, we were not able to establish any noticeable influence of
the Reynolds number in this range, because all the measured 5

values lle within a certalin scatter range,

7.3.3. Rudder rotation

Figures 54 to 57 contain two pressure distributions of the
rectangular wings for rudder rotational oscillatlons around the
rudder leading edge. The fin 1s fixed and is not set at an angle.
The large aspect ratio theory curves are plotted, in addition to’
the measured values for thié osecillation form. It was not '
possible to use the colocation method for solving this 1lifting
surface theory, according to [3], because the three support
points in the chord direction are not sufficient to be able to
determine the singularity which occurs forfrudder;oscillatibbSHHQ
at the rudder slit (see also [38]).

The two-dimensional theory is also shown, in addition to the

large aspect ratio theory, for the section closest to the model
root, that is Section VII at A = 3.1 or Section VI at A = 2.5.
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Figure?SM and 55. Pressure distribution
';=w +iT-. OVer rectangular wing for rudder
ofaﬁlonal oscillations JA=3,1; vEeiz lw* =0 340

~0- measurement; -—— large aspect ratio
theory: w?—$two—dimensional theory.

Figures. 56 and 57.

TT=TT+1'IT

Pressure distribution

over rectangular w1ng for rudder
FotatTIonal oscillations' A=3,1;

V=6 Uz; [w®l = 0,349
-0— measurement; —— large aspect ratio.
theory; -.- two-dimenslional theory.




The wvariation of the two-dimensional theory is identical for
all sections; this was also true for the sweptback wing discussed

below.

It can be seen that there is good agreement over a wide
range of the model area, especially at the large aspect ratio
A = 3.1 (Figures 54 and 562ﬂbetween the measured values and the
large aspect ratio theory. The measured values are, as expected,
usually somewhat smaller than the theoretical values. Only over
the rudder 1s the measured real part increase: stéeper in the
viecinity of the rudder slit than predicted by theory, so that
here the measured values exceed even the large aspect ratio
th@ory and the two-dimensional theory (see, for example, section
ﬁﬂjin Figure 54). The fact that the increase in the measured
real parts is not as steep over the fin can be attributed to the
formation of the rudder slit. Because the rudder slit was
produced by cutting open the resin skin of the model, a sharp
edge resulted, which carries out only slight deflections corres-
ponding to the rudder coscillatlon amplitude. These deflections
of the rudder leading edge have the effect of a rudder step
oscillation. Apparently the pressure distribution over the
fin depends greatly on the nature of the rudder slit and on
the motion of the rudder leading edge. In the results presented,
the deflection of the rudder leading edge amounted to only a '
few percent of the deflection of the rudder traliling edge,.

The variation of the large aspect ratio theory in the span
direction has a decrease towards the nose in the viecinity of
the wing tip. This decrease occurs for both components, whereas
for wing rotation, we only found it in the imaginary part (see
above). This is a contradiction to the measured results, because
they take on a uniform variation over the fin. The reason for
the differing behavior of the theory can be attributed to the

TU
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‘various approximations made. These approximations were made in
the large aspect ratio theory. The modifilcation of the T func-
tion with respeect to the pressure variation has an especilally
large effect on the front half of the wing. It does not have a
strong effect over the rudder, The pressure variation of the
large aspec¢t ratic theory over the rudder is therefore hardly
changed at the wing tip, compared with the two-dimensional theory.
(see Figures 58 and 59). Thils fact contradicts the measured
valuesg, because the measured real parts over the rudder are
negative and increase towards the outside, which is produced

by the three-dimensional flow,ijust like for wing rotation (see
Figures 54 and 56).

Figures 60 and 51 show aerodynamic force distributions of
the rectangular wings in the span direetion. The measured values
are obtained by 1ntegrating the measured pressure distributions /91
‘over the entire wing chord at the individual measuremecnt sections.
For the aspect ratio A = 3,1, we have approximate agreement with
the large aspect ratio theory. The fact that this theory gives
a good representation of the pressure equalizatlon over the wing
is a result of the decrease in the theoretical variation at the
nose discussed above. As to be expected, large deviations already

occur for the aspect ratio A = 2.5 (Figure 61}.

Figures 62 and 63 showsaerodynamic force distributions of
the rudder in the span direction. The measured values are
obtained by integration over the pressure distribution measured
over the rudder at the individual sections. It can be seen
that,even for the large aspect ratio A = 3.1, there are consid-
erable :déviations between the measured values and the two theories
(Figure 62). Here the large aspect ratio theory gives only a
slight improvement compared to the two-dimensional theory. The
reason for this is that the terms independent of the T funetion '
in the expressions for thevrudder derivatives increase [see (33)1.
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Figure 61. Distribution of wing aerodynamic force over
rectangular wing for rudder rotational oscillations;

A=2,5; v =10He; lw?® =0,454 } o- measurement; --— large aspect ratio
theory; --- two-dimensional theory.
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Figures 64 to 67 show pressure dilstributions for rudder
rotatiocnal oseciliations of the sweptback wings. The measurement
results do not deviate essentiaily from the results for the
rectangular wings. The same 1is true for the large aspect
ratio theory. PFigures 66 and 67 show two pressure distributions
at the same reduced frequency |[w¥*| = 0.445 but for different
'Reynolds numbers. For the real part, the measured values often

coincide, whereas there are slight deviations in the 1maginary
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part. This deviation cannot be immediately attributed to the
influence of a Reynolds number effect, because there is a certain
scatter in the measured values, which is unavoldable because of
the funnel turbulence. On the other hand, any deviation of the
measured value of the reference line would be trangferred to all

~of the measured points.
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'As aiready established for the rectangular wings, the
spatial derivatives are far below the theoretical values [32]
for rudder rotational oscillations of the sweptback wing. This
result 1s emphasized by plotting the aerodynamié and moment /96
derivatives of both wing shapes, as was done in Figures 68 to 75.
Here the measured aerodynamic force derivatives 1ie considerably
below the values for the large éspect ratio theory already for
the aspect ratio A = 3.1. At A = 2.5, they only amount to about
60% of the théory. The deviations of the moment derivatives are
even larger. This fact can be seen from the pressure distribution
over the ruddey, because the measured values deviate the most
from the theoretical values at the trailing edge; but here apgain,
it is the pressures which have the greatest effect on the rudder
moment. This phenomenon is primarily to be observed in the real

part (sece Figures 54, 56, 64, and 66).

The measurement results clearly show that the aerodynamic
forces and moments on oscillating rudders cannot be given with
sufflecient accuracy even by the large aspect ratio theory. No
usable results could be expected from the two-dimensional theory
for this cogcilliation form, becaﬁse there are clear deviations
already when measurements are carried out with two-dimensional
rloji 391, ~The Teasons for this are primanily thelARfIGSACEs of tHE|
friction boundary layer (Kutta condition) which is onlj
considered phenomenologically in the theory. In addition, the
effects of profile thickness and rudder slit play a role here,

which is also not considered by the theory.

It is possible and likely that this discrepancy will be
reduced by improving the solution methods of the three-dimensional
lifting surface theory. The main task consists in the theoretical
consideration of all the friction influences, which has not been
successful up to the present. At the present time, nothing else
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can be done but to reduce the theoretical pressures by the
correction factors, which can be obtained from the present
measurements and similar ones made with other wings [42].
Figures 72 to 75 do not show a clear influence of Reynolds
number. Considering the large deviations between the measured
results and the theories considéred, one can at least say that
a possible Reynolds number influence will continue to be /105
negligible as long as no better theory becomes availlable.

7.3.4, Simultaneous fin and rudder rotation

Figures 76 and 77 show a pressure distribution for simul-
taneous fin and rudder oscillations of the rectangle model. The
phase angle between the oséillation forms is 180°. The fin
carries out rotatlonal motions around the neutral éxis. The
rotational amplitude of the rudder is almost twice as great as
that of the fin. Therefore, the singularity at the rudder slit
1s just as pronounced. Except for the outermost section, the
agreement between measured values and large aspect ratio theory
is very good. The reason for this is probably that the deviations
of the theory for pure wing oscillations and for pure rudder l
oscillations cancel to an increased degree when both oseillation
forms are superimposed, the more the phase displacement approaches
180°. » This is also true for the two-dimensional theory in the
area of the wing root. For the case where the phase displacement
between the two oscillation forms vanlshes, we should expect an
addition of the theoretical deviations.

The measurement confirms the superposition principle of the
two theories under congideration. Aé far as flutter calculations
are concerned, it 1s remarkable that the deficiencies of the
large aspect ratio theory for rudder oscillations discussed in
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the previous sectlon are not as serious as they first appear,
because aircraft rudders are often tuned so softly that they
will oscillate out of phase with the fin. Apparently, tThe
large aspect ratio theory would produce good results in flutter

calculations of such aircraft.

8. Summary /107

Numerous pressure distribution measurements over oscillating
half-wing models 1in incompressible flow were carried out for
an experimental test of three unsteady 1ifting surface theories.
We have considered a lifting surface theory, a 1lifting line
theory, and the exact two-dimensional theory. The measurements
were done on a rectangular wing and a sweptback wing model
with a constant chord of 7 = 0.6 m. The sweepback of the swept-
back wing was 25°. In addition, we measured a wing with a full
span rudder with a constant rudder chord of 30% of wing chord.
All wings had a NACA 0012 profile. The models were attached
perpendicularly to a plate in the form of haif-wings.) The plate!
extended from the lower edge of the wind tunnel nozzléwéﬂ;bugh
the free test section up to the capture funnel. The plate has
the function of a symmetry plane, and the half-model can be
considered to be reflected at this plane, The aspect ratio of
the models could be reduced from A = 3.1 to A = 2.5.

The models were execited to perform pitch oscillations around
various axes perpendicular to the incident flow direction. Also,
rudder rotational oscillatlons around the rudder leading edge
were performed. Measurements ol simultaneous fin and rudder
rotational motions were carried out for the rectangular wing as
well. The wind tunnel measurements were carried out at the
reduced freguencies |w*| = 0.13 to 0.76, as well as for steady
flow (w*¥ = 0). They were complemented .by measurements of

osclllations in guiet air.
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In the case of wing pitch oscillations, the measurement
results agree well with the 1lifting surface method. The theory
of the large aspect rafio lifting surface (1ifting line method)
is quite favorable. It represents an essential improvement of

the two-dimensional theory.

In the case of rudder rotational oscillations, the large
aspect ratlo theofy produces good agreement for the aspect ratio
= 3.1. At A = 2.5, the deviations are quite large, however,

Especially the measured derivatives of the rudder aerodynamic

force and the rudder moment are considerably below the theore%ﬁﬁhf

tical values. These deviations are probably primarily due tof

the friction influences which are ignored in the theory. However,

we were not able to establish any noticeable influence of
Reynolds number orn the measurementtresults for the 1lnvestigated
range between Re = 0.55 ° 10°% to 1.6 ° 10°%.

When there are simultaneous rotational oscillations of the
fin and of the rudder, the measured pressure distkibution agrees
well wilith the large aspect ratlio theory. The reésonnfor this is
that the deviations in the theory for pure wing-oscillations and
for pure rudder oscillations cancel to a considerable extent
when these two oscilllatlon forms are superimposed, if the
oscillations are performed out of phase, that is, with a phase
displacement of 180°.
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